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Introduction Impossible Di�erential Cryptanalysis of Block Ciphers

Impossible Di�erential Cryptanalysis
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Impossible Di�erential Cryptanalysis:

I was introduced by Knudsen in 1998, and Biham,
Biryukov & Shamir in 1999;

I is part of the Di�erential Cryptanalysis family. . .

I . . . but uses a distinguisher of probability 0;

I is very e�cient against iterated block ciphers.

L. R. Knudsen,
DEAL – A 128-bit cipher,
1998.

E. Biham, A. Biryukov and A. Shamir,
Cryptanalysis of Skipjack Reduced to 31 Rounds Using Impossible Di�erentials,
EUROCRYPT’99.
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Introduction Impossible Di�erential Cryptanalysis of Block Ciphers

Impossible Di�erential Cryptanalysis: Scenario
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Introduction Impossible Di�erential Cryptanalysis of Block Ciphers

Finding an Impossible Di�erential

�
Y

�
X

Proba=1

Proba=1

Contradiction

I Miss-in-the-middle technique [BBS99];

I U -method [Kim et al. 03];

J. Kim and S. Hong and J. Sung and C. Lee and S. Lee,
Impossible Di�erential Cryptanalysis for Block Cipher Structures,
INDOCRYPT’03.
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Introduction Impossible Di�erential Cryptanalysis of Block Ciphers

Early-Abort Technique
J. Lu, J. Kim, N. Keller and O. Dunkelman,
Improving the E�ciency of Impossible Di�erential Cryptanalysis of Reduced
Camellia and MISTY1,
CT-RSA’08.
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Introduction Impossible Di�erential Cryptanalysis of Block Ciphers

Existing Flaws

Algorithm Ref. Type Gravity

CLEFIA-128 [ZH08] data 7

CLEFIA-128 [T10] unverifiable -
Camellia [WZF07] big flaw 7

Camellia-128 [WZZ08] big flaw 7

Camellia [LKKD08] small flaws 3

LBlock [MN1208] small flaw 3

Simon [ALLW13,14] big flaw 7

Simon [AL13] data 7
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Introduction Impossible Di�erential Cryptanalysis of Block Ciphers

Objectives

I Formalize the evaluation of the complexities;

I Automate the whole process;

Results

I Optimization of previous attacks;

I Development of new techniques;

I Application to block ciphers (CLEFIA, Camellia, LBlock, Simon)
) Best Cryptanalysis.
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Evaluation of Complexities Memory
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Evaluation of Complexities Data

Amount of Data needed
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Evaluation of Complexities Time

Time Complexity
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I Encrypt all the data;

I
Early-Abort Technique

I Check each key step by step;
I Decrease the number of pairs in the list;

I Test every key remaining in the candidate key set
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Evaluation of Complexities Uniformized Formulas

Uniformized Formulas
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) easy to use formulas;

) more trade-o�s;

) automatic tool & systematic search;

) development of new techniques;
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New Techniques

I Multiple Impossible Di�erentials

I
State -Test Technique



New Techniques Specification of CLEFIA

Example of an Application to CLEFIA

I block size:
4 ⇥ 32 = 128 bits

I key size:
128, 192, 256 bits

I # of rounds:
18, 22, 26

F0

P i
0 P i

1 P i
2 P i

3

F1

P i�1
0 P i�1

1 P i�1
2 P i�1

3
RK2i�2 RK2i�1

T. Shirai, K. Shibutani, T. Akishita, S. Moriai and T. Iwata,
The 128-Bit Blockcipher CLEFIA (Extended Abstract),
FSE’07.
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New Techniques Improve the Data Complexity

Multiple Impossible Di�erentials
Formalize the idea of [Tsunoo et al. 08]
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New Techniques Improve the Time Complexity

State -Test Technique
Decrease the number of key bits to guess

cste
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Comparison

Algorithm Rounds Time Data Memory Ref.

CLEFIA-128 13/18 121.2 117.8 86.8 [MDS11]
state -test 13/18 116.90 116.33 83.33
multiple 13/18 122.26 111.02 82.60

multiple & state -test 13/18 116.16 115.38 83.16
15 / 19



Results Camellia, LBlock, and Simon

Camellia
128-bit block

Algorithm Rounds Time Data Memory Ref.

Camellia-128
11/18 122 122 98 [LLGWLCL12]

11/18 118.43 118.4 92.4

Camellia-192
12/24 187.2 123 155.41 [LLGWLCL12]

12/24 161.06 119.70 150.70

Camellia-256
13/24 251.1 123 203 [LLGWLCL12]

13/24 225.06 119.71 198.71
Camellia-256 † 14/24 250.5 120 125 [LLGWLCL12]

state-test 14/24 220 118 173
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Results Camellia, LBlock, and Simon

LBlock
64-bit block, 80-bit key

Algorithm Rounds Time Data Memory Ref.

LBlock
22/32 79.28 58 72.67 [KDH12]

22/32 71.53 60 59
23/32 74.06 59.6 74.6
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Results Camellia, LBlock, and Simon

Simon

Algorithm Rounds Time Data Memory

Simon-32/64 19/32 62.56 32 44
Simon-48/72 20/36 70.69 48 58
Simon-48/96 21/36 94.73 48 70
Simon-64/96 21/42 94.56 64 60
Simon-64/128 22/44 126.56 64 75
Simon-96/96 24/52 94.62 94 61
Simon-96/144 25/54 142.59 96 77

Simon-128/128 27/68 126.6 126 61
Simon-128/192 28/69 190.56 128 77
Simon-128/256 30/72 254.68 128 111
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Conclusion

Perspectives

• Extend results to Substitution Permutation Network
ciphers (AES,. . . );

• Generalize the State -test technique;
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