Scrutinizing and Improving Impossible Differential Attacks: Applications to CLEFIA, Camellia, LBlock and Simon

Christina Boura, María Naya-Plasencia & Valentin Suder

ASIACRYPT 2014, Kaohsiung, Taiwan

December 8th, 2014

Impossible Differential Cryptanalysis

Impossible Differential Cryptanalysis:

 δ_{in}

 δ_{out}

is very efficient against iterated block ciphers.

DEAL – A 128-bit cipher,

1998.

E. Biham, A. Biryukov and A. Shamir,

Cryptanalysis of Skipjack Reduced to 31 Rounds Using Impossible Differentials, EUROCRYPT'99.

- was introduced by Knudsen in 1998, and Biham, **Biryukov & Shamir** in 1999;
- is part of the Differential Cryptanalysis family...
- but uses a distinguisher of probability 0;

Impossible Differential Cryptanalysis: Scenario

- place an impossible differential
 (δ_X, δ_Y) on r_δ rounds;
 - extend it by differentials $(\delta_{in} \rightarrow \delta_X)$ and $(\delta_{out} \rightarrow \delta_Y)$;
 - evaluate the parameters:
 - r_{in}, r_{out} : number of rounds c_{in}, c_{out} : log of the probabilities k_{in}, k_{out} : involved subkeys $|k_{in} \cup k_{out}|$: key entropy

Finding an Impossible Differential

- Miss-in-the-middle technique [BBS99];
- ► *U*-method [Kim *et al.* 03];

J. Kim and S. Hong and J. Sung and C. Lee and S. Lee, Impossible Differential Cryptanalysis for Block Cipher Structures, INDOCRYPT'03.

J. Lu, J. Kim, N. Keller and O. Dunkelman,

Improving the Efficiency of Impossible Differential Cryptanalysis of Reduced Camellia and MISTY1,

CT-RSA'08.

J. Lu, J. Kim, N. Keller and O. Dunkelman,

Improving the Efficiency of Impossible Differential Cryptanalysis of Reduced Camellia and MISTY1,

CT-RSA'08.

Pairs w/
$$\delta_{in}/\delta_{out}$$

J. Lu, J. Kim, N. Keller and O. Dunkelman,

Improving the Efficiency of Impossible Differential Cryptanalysis of Reduced Camellia and MISTY1,

CT-RSA'08.

J. Lu, J. Kim, N. Keller and O. Dunkelman,

Improving the Efficiency of Impossible Differential Cryptanalysis of Reduced Camellia and MISTY1,

CT-RSA'08.

Existing Flaws

Algorithm	Ref.	Туре	Gravity
CLEFIA-128	[ZH08]	data	×
CLEFIA-128	[T10]	unverifiable	-
Camellia	[WZF07]	big flaw	×
Camellia-128	[WZZ08]	big flaw	×
Camellia	[LKKD08]	small flaws	 Image: A second s
LBlock	[MN1208]	small flaw	 Image: A second s
SIMON	[ALLW13,14]	big flaw	×
Simon	[AL13]	data	×

Objectives

- Formalize the evaluation of the complexities;
- Automate the whole process;

Objectives

- Formalize the evaluation of the complexities;
- Automate the whole process;

Results

- Optimization of previous attacks;
- Development of new techniques;
- ► Application to block ciphers (CLEFIA, Camellia, LBlock, SIMON) ⇒ Best Cryptanalysis.

Amount of Memory needed

Amount of Memory needed

 $\left(1 - \frac{1}{2^{c_{in}+c_{out}}}\right)$

Amount of Memory needed

$$\mathcal{P}=~\left(1{-}rac{1}{2^{c_{in}+c_{out}}}
ight)^{m{N}}~<~rac{1}{2^{|k_{in}\cup k_{out}|}}$$

Amount of Memory needed

$$\mathcal{P} = \left(1 - \frac{1}{2^{c_{in} + c_{out}}}\right)^{N} < \frac{\frac{1}{2}}{2^{|k_{in} \cup k_{out}|}}$$

Amount of Memory needed

$$\mathcal{P} = \left(1 - \frac{1}{2^{c_{in} + c_{out}}}\right)^N < \frac{1}{2^{|k_{in} \cup k_{out}|}}$$

Since $\mathcal{P} \simeq e^{-N(2^{-(c_{in}+c_{out})})}$, we will **consider** that $N_{\min} = 2^{c_{in}+c_{out}}$.

Amount of Memory needed

$$\mathcal{P} = \left(1 - \frac{1}{2^{c_{in} + c_{out}}}\right)^N < \frac{1}{2^{|k_{in} \cup k_{out}|}}$$

Since $\mathcal{P} \simeq e^{-N(2^{-(c_{in}+c_{out})})}$, we will consider that $N_{\min} = 2^{c_{in}+c_{out}}$. **Memory Complexity**: min $\{\mathbf{N}, 2^{|k_{in} \cup k_{out}|}\}$.

Data

Amount of Data needed

• To build these N pairs, we need $C_N < 2^s$ plaintexts.

Amount of Data needed

• To build these N pairs, we need $C_N < 2^s$ plaintexts.

Data Complexity: C_N .

$$C_{N} = \max\left\{\min_{\delta \in \{\delta_{in}, \delta_{out}\}} \left\{\sqrt{N2^{s+1-|\delta|}}\right\}, N2^{s+1-|\delta_{in}|-|\delta_{out}|}\right\} < 2^{s}.$$

$$T_{comp} = C_N C_E +$$

• **Encrypt** all the data;

$$T_{comp} = C_N C_E + \left(2^{|k_{in} \cup k_{out}|} \frac{N}{2^{c_{in} + c_{out}}} \right) C'_E$$

- Encrypt all the data;
- Early-Abort Technique

$$T_{comp} = C_N C_E + \left(2^{|k_{in} \cup k_{out}|} \frac{N}{2^{c_{in} + c_{out}}} \right) C'_E$$

- Encrypt all the data;
- Early-Abort Technique
 - Check each key step by step;

$$T_{comp} = C_N C_E + \left(2^{|k_{in} \cup k_{out}|} \frac{N}{2^{c_{in} + c_{out}}} \right) C'_E$$

- Encrypt all the data;
- Early-Abort Technique
 - Check each key step by step;
 - Decrease the number of pairs in the list;

$$T_{comp} = C_N C_E + \left(2^{|k_{in} \cup k_{out}|} \frac{N}{2^{c_{in} + c_{out}}} \right) C'_E + \frac{2^{|K|}}{2^{|k_{in} \cup k_{out}|}} \mathcal{P} 2^{|k_{in} \cup k_{out}|} C_E.$$

- Encrypt all the data;
- Early-Abort Technique
 - Check each key step by step;
 - Decrease the number of pairs in the list;

Test every key remaining in the candidate key set

Time

Time Complexity

$$T_{comp} = C_N C_E + \left(2^{|k_{in} \cup k_{out}|} \frac{N}{2^{c_{in} + c_{out}}} \right) C'_E + \frac{2^{|K|}}{2^{|k_{in} \cup k_{out}|}} \mathcal{P} 2^{|k_{in} \cup k_{out}|} C_E.$$

- Encrypt all the data;
- Early-Abort Technique
 - Check each key step by step;
 - Decrease the number of pairs in the list;

Test every key remaining in the candidate key set

 $T_{comp} < 2^{|K|} C_E.$

Uniformized Formulas

$$T_{comp} = C_N C_E + \left(2^{|k_{in} \cup k_{out}|} \frac{N}{2^{c_{in} + c_{out}}}\right) C'_E + \mathcal{P} 2^{|K|} C_E.$$

- ⇒ easy to use formulas;
- ⇒ more trade-offs;
- ⇒ automatic tool & systematic search;
- \Rightarrow development of **new techniques**;

New Techniques

Multiple Impossible Differentials

State - Test Technique

Example of an Application to CLEFIA

T. Shirai, K. Shibutani, T. Akishita, S. Moriai and T. Iwata, The 128-Bit Blockcipher CLEFIA (Extended Abstract), FSE'07.

Multiple Impossible Differentials

Formalize the idea of [Tsunoo et al. 08]

Multiple Impossible Differentials

Formalize the idea of [Tsunoo et al. 08]

Decrease the number of key bits to guess

 $|k_{in} \cup k_{out}| = 122 \text{ bits } \Rightarrow |k_{in} \cup k_{out}| = 122 - 16 + \underbrace{8}_{B'} \text{ bits}$

122.26

116.16

13/18

13/18

multiple

multiple & state-test

111.02

115.38

82.60

83.16

15 /	19
------	----

Camellia

128-bit block

Algorithm	Rounds	Time	Data	Memory	Ref.
Camellia-128	11/18	122	122	98	[LLGWLCL12]
	11/18	118.43	118.4	92.4	
Camellia-192 -	12/24	187.2	123	155.41	[LLGWLCL12]
	12/24	161.06	119.70	150.70	
Camellia-256	13/24	251.1	123	203	[LLGWLCL12]
	13/24	225.06	119.71	198.71	
Camellia-256 †	14/24	250.5	120	125	[LLGWLCL12]
state-test	14/24	220	118	173	

LBlock 64-bit block, 80-bit key

Algorithm	Rounds	Time	Data	Memory	Ref.
LBlock	22/32	79.28	58	72.67	[KDH12]
	22/32	71.53	60	59	
	23 /32	74.06	59.6	74.6	

SIMON

Algorithm	Rounds	Time	Data	Memory
SIMON-32/64	19 /32	62.56	32	44
Simon-48/72	20 /36	70.69	48	58
SIMON- $48/96$	21 /36	94.73	48	70
SIMON- $64/96$	21 /42	94.56	64	60
Simon-64/128	22 /44	126.56	64	75
Simon-96/96	24 /52	94.62	94	61
$\operatorname{Simon-96}/144$	25 /54	142.59	96	77
SIMON-128/128	27 /68	126.6	126	61
SIMON-128/192	28 /69	190.56	128	77
Simon-128/256	30 /72	254.68	128	111

Conclusion

Perspectives

• Extend results to **Substitution Permutation Network** ciphers (AES,...);

• Generalize the *State-test* technique;